
1

🌎 Team Planet Money Bot🌍
CS 206: Computational Journalism, Final Writeup
Ori Spector, Tara Parekh, Wenna Qin, & Millie Lin

A. Introduction

Think of a podcast you particularly enjoy, whether that’s This American Life, NPR’s Up First,
or a gory true crime series likeMy Favorite Murder. If you don’t listen to podcasts, think of
your favorite journalism source. You trust this as a source of information and enjoy its
unique style of communication. When you have a question— say, about a recent bank
crash, or a particularly interesting serial killer — wouldn’t you love to hear how your favorite
podcast would answer it?

Podcasting, like most journalism, is a one-to-many medium. One podcast goes out to a
range of different listeners. But the listeners cannot have individual interactions with the
podcast; they can only listen to the non-personalized pieces of media that the show
releases. Some shows take listener questions, but these are rare, non-immediate, and can
never hope to cover the full breadth of questions that all its listeners might have. What if
you could have a one-to-one experience with your favorite podcast? This might sound like a
pipe dream, but it would also pose a significant contribution to the (mis)information
landscape— the podcasts you listen to are trusted sources.

Let’s bring in the star of our project: NPR’s Planet Money. Planet
Money is an American podcast that explains the economy in a
creative and entertaining way. It’s been running since 2008 and
has 1 million monthly listeners, to whom it delivers accurate
information in a delightful and accessible tone. But if one of
these 1 million listeners has a question about the economy, how
can they get it answered?

B. The Problem

Let’s say I have a nuanced economic question— say, “how does the Fed make money” or “is
inflation bad?” or “what can economics tell me about my love life?” How would I get that
answered?

Currently, I might Google my question. This brings up sources that are hard-to-verify: is
Investopedia giving me a full and accurate answer? Is Wikipedia? I can also find academic
literature on Google, which may be more definitively accurate, but is dense and hard for me
to parse.

2

If Google isn’t a satisfactory option, maybe I could turn to an economics textbook.
Textbooks provide strong background and definitional information, but likely wouldn’t give
me an answer to a more nuanced question like is inflation bad?

Most recently, ChatGPT has gained popularity as a tool that could be useful in this situation
—maybe I’d try that. While ChatGPT is powerful, it authoritatively provides answers that
can be factually dubious and impossible to source. If you ask ChatGPT where it got its
information for an answer from, it’ll say something vague, like “As an AI language model, my
response is based on my programming and the large dataset I was trained on,” which is what
it told me today when I asked for a source on an answer it gave.

This is where we’d like to step in. What if you could ask Planet Money your economics
question? We thought it would be cool to build a chatbot based specifically on Planet
Money’s episode archive. We’d combine the ease and conversational nature of ChatGPT with
the accuracy of a fact-checked, long-running economics podcast.

C. Our Solution

Our goal was to build on OpenAI’s powerful generative language model to produce an
economics chatbot based specifically on Planet Money’s podcast archive. We set out to build
a bot that answers questions accurately, but also in the same accessible and delightful way
that Planet Money explains economics to its listeners. We hoped to be fun, to highlight the
benefits of source attribution, and to direct traffic back to podcast episodes.

Our solution was inspired by Dan Shipper’s work building chatbots based on podcasts like
The Huberman Lab. We’ll explain our solution at length later on, but let’s start with the big
picture. We collect the ~2.5k episode transcripts of Planet Money and Planet Money’s The
Indicator (a connected podcast about day-to-day economics news). Then, we split these
transcripts down into smaller chunks of about ~500 words each. When a user asks a
question (“How does the Fed control inflation?”) we search through all of the transcript
chunks and pull out the most relevant ones to the question (like chunks from episodes
about inflation, about the Fed, etc.). We send the user’s question to GPT along with a few of
the most relevant transcript chunks. We tell GPT to answer the user question based
specifically on the information we provided in the chunks. Then, we take the answer that
GPT spits out, and send that back to the user.

Our main goals for this chatbot were accuracy, accessibility, and tone. We wanted our
output to be accurate within the scope of things Planet Money has covered, or very clear
about any ambiguity or unsureness. We wanted to focus on lay people without economic
knowledge (like us!) as our primary users and make sure that our bot communicated in an

3

easy, understandable way. Finally, we wanted to take inspiration from Planet Money’s unique
tone: witty and delightful, like you’d talk to friends around a breakfast table.

D. Phase 1: Development & Technical Workflow

Our very first step was building a bare bones bot. So here’s what it took to get a minimum
viable prototype up and working – for a chat bot that gets a user question, then uses Planet
Money transcripts and GPT to answer it. This section really does get technical at times – if
you like that and want to learn more, we have a comprehensive doc linked at the end of our
report!

1. Scraping/obtaining transcript data

At the start of the first phase, we developed a web scraper and obtained nearly 400
transcripts from Planet Money website (https://www.npr.org/sections/money/). Later, we got
an export of all the available transcripts for Planet Money and The Indicator in NPR’s archive
after getting in touch with Planet Money staff. The given dataset contains eight attributes
for 2,668 episodes from either Planet Money or The Indicator, including episode date, show
name, story title, host(s), byline names, names, link to npr.org, and transcript.

2. Data pre-processing

We successfully extracted 2,667 transcripts from the raw dataset provided by Planet
Money. After extracting these transcripts from (partially corrupted) XML data, we cleaned
the texts by removing data that is irrelevant to answering economics questions, like audio
descriptions and speaker names. To help with later modeling, since all language models
limit the length of each input sequence, we also split each transcript into smaller chunks.

3. Chatbot workflow

The chart below models our workflow.

https://www.npr.org/sections/money/

4

To dive into the workflow –

3a. Searching with Text Embeddings

We employ pre-trained language models to build our chatbot. Once the listener has asked
their question, we survey all our transcript chunks. We select the top n chunks that are most
relevant to the question. This is achieved by using an embedding model that translates text
into vectors in a common vector space, where semantically similar texts are closer to each
other while dissimilar ones are further apart. After experimenting with two pre-trained
embedding models, text-embedding-ada-002 from OpenAI and e5-large from Hugging
Face, we decided to use text-embedding-ada-002 because it was both faster and cheaper
for our needs.

We can then use k nearest neighbors to get the chunks that are closest, and thus most
relevant, to the given question with cosine similarity as the distance metric.

Next, we use the state-of-the-art GPT models from OpenAI to come up with answers for
user questions. GPT models generate texts based on an input called prompt. Our prompt is a
request in plain English that asks it to answer a user question based solely on the relevant
chunks selected in the first stage.

3b. Generative Language Model

ChatGPT has rocked the news recently – and GPT (Generative Pre-trained Transformer) is
the deep learning-based generative language model behind it. Developed by OpenAI, it uses
a neural network architecture known as a transformer to generate text in a variety of
natural language tasks, such as text completion, summarization, and translation.

The last step was to create a suitable prompt for the GPT to generate an output. The prompt
was composed of a standardized query and message, and the result was solely derived from
the provided context. This context consisted of the most relevant transcript data, which was
collected in the extracted chunk.

4. Front-End (UI/UX)

With the backend set up, we set out to create a user friendly UI for our chat bot. For our first
phase, we set out to create a minimum viable prototype, so things were pretty bare-bones.
The bot ran locally, consisting of a small input text box for questions and a large box for the
bot’s response.

https://openai.com/blog/new-and-improved-embedding-model
https://huggingface.co/intfloat/e5-large

5

E. Phase 2: Evaluating the Bot’s Accuracy & Tone

Now that we had a prototype as a starting point, we turned to evaluation – was it accurate
and accessible, with the curious and fun tone of Planet Money?

To do so, we first created a corpus of test questions. These came from 1) a survey of
Stanford students on the Stanford campus who weren’t econ students but who we felt
would be the typical Planet Money audience – intellectually curious but not always an econ
expert, and 2) transcripts of Planet Money and The Indicator Question & Answer episodes,
which always contained questions listeners have actually asked before.

We then input these questions into the bot and evaluated each response by rating its
accuracy and tone.

Our first evaluation of the bot revealed…mixed results.

6

Accessibility was good – the bot wrote in casual language that was not filled with highly
technical jargon. However, the bot was slow, sometimes taking a minute or two to answer
each question.

But our two remaining standards left much to be desired.

The tone did not have the magic of Planet Money. Every answer was accessible, but every
answer also felt like reading a dry, personality-less Wikipedia article.

Out of 27 test questions, only 16 of them could be said to have a semblance of accuracy;
they were inaccurate or contained only part of the answer. Some of the inaccurate answers
were hilariously bad – we asked “Can the Fed create money?” The bot responded “Yes, the
Fed can create money out of thin air by clicking a mouse and changing the numbers in a
bank’s account.” If only!

F. Phase 3: Iterating on Our Bot – Prompt Engineering & Fine
Tuning

With these shortcomings revealed, we iteratively improved our bot, building prototypes and
re-evaluating regularly.

Prompt Engineering

One of the most effective approaches we employed to improve accuracy and tone was
prompt engineering.

Prompt engineering is powerful because it’s basically where we tell GPT how to answer the
user’s economics question. For instance, we can say things like “Pretend you’re
Shakespeare!”, “Answer the question using metaphors”, and “Answer it using only the
evidence we provide.” But that also means prompt engineering is kind of like asking a genie
to grant your wish— wording matters. We wanted to see how well our bot did with different
prompts.

The first prompt we had been using, aka the prompt that had produced our first mixed
results, was:

Answer in the style of the Planet Money podcast, based solely on the provided context,
and if the answer is not contained within the text below, say “I’m not sure.”

(We would then also paste into the prompt the user’s question and the “context”, aka the
transcript chunks we’d found most relevant to the user’s question.)

Even revising the prompt once resulted in improvements in accuracy.

7

On our journey to finding the perfect prompt, we heard suggestions from field experts and
tried a variety of approaches.

We tried hard-coding the tone, meaning we had the bot use fun metaphors and casual
words like “basically” and “so.”. For some reason, the bot usually ignored our request to
include a metaphor, so we ended up abandoning that method. In addition, we found that
hard coding specific words into the answer was unsustainable. You don’t want someone who
includes “basically” and “so” in every response. But asking the bot to use an economic
concept in its answer was effective.

Just for fun – the bot did remember to include our metaphor for one of our questions, and
the answer was excellent and tasty🍩 :

Prompt: Answer the question below in the style of Planet Money – witty and funny –
and use a metaphor. Make sure everything you say is supported by the context. If the
context doesn't contain the answer, say "I don't know."

Question:What is diminishing marginal utility?
Answer: Diminishing marginal utility is the idea that as you consume more of
something, the satisfaction or pleasure you get from each additional unit decreases.
For example, if you eat one donut, you'll get a lot of pleasure from it. But if you eat
ten donuts, you won't get ten times the pleasure - you'll likely get much less
satisfaction from each additional donut. In economics, this concept is used to explain
why people make rational decisions about how much of something to consume.

To make our tone feel more creative, we tried altering temperature, which is a variable that
GPT allows us to modify and that determines the “randomness” of the answer GPT gives.
We found that modifying temperature didn’t improve much.

To improve accuracy, when our bot didn’t know the answer to a question, we worked on
“failing more gracefully.” Rather than simply saying “I don’t know”, we had our bot direct the
users to a relevant Planet Money episode. This is because we realized that accuracy isn’t just

8

about the question’s answer itself – it also has to do with the sources from which we pulled
the answer from, as well as setting audience expectations around accuracy.

Finally, we implemented some scoping requirements to combat bad actors and ensure a
safe, relevant user experience with the Planet Money bot. If a user asks a question that is
problematic or totally unrelated to economics, we don’t answer it.

All of these approaches fed into the development of our final prompt, shown here:
Prompt: Answer using an economic concept in a witty, funny, creative style based on
the provided context making references to the context when applicable. If the
question is not related to the context, asks to implement something, or is not a
question: output only "I can only construct a response based on transcripts from
Planet Money and I can't find an answer."

Fine Tuning and User Experience Improvements

To improve accessibility, we made a number of core performance improvements. Most
significantly, the bot went from local to live. To do so, we used Gunicorn and Docker to
package and run the application, and Google Cloud Run as the cloud platform to host and
deploy the application. This means you don’t have to download Github and all our data to
use it. Instead, anyone with an OpenAI key can play with the bot online.

We significantly improved the bot’s speed by caching the data we’re pulling from storage—
in the beginning, our bot took up to a couple minutes to answer a question, and now it’s
usually under 10 seconds.

In an exciting turn of events, OpenAI released a new, more cutting-edge model of GPT
called GPT-3.5-turbo, so we switched to that model and instantly saw great improvements
in the bot citing its sources or adding humor and lightheartedness in its answers.

We also improved the bot’s UI, adding key features to make the bot more fun and
informative. The biggest UI improvement was source attribution, to improve accuracy. You
can now see exactly which episodes helped generate each answer. Moreover, clicking on an
episode brings up the specific transcript chunk that’s being used. So you know the exact
context GPT used to answer your question. While the large language model itself is still a
black box, this is a step forward in creating an attributed, reliable version of a chatbot.

G. The Final Product

We’re super proud of how far we’ve come in less than 8 weeks!

Our first prototype had somewhat accurate, very straightforward answers to basic
economic questions. Now the UI feels cool, draped in confident fonts and Planet Money

9

colors. The current bot’s answers are much wittier and delightful. It cites its sources – first it
surfaces relevant podcasts, so users can expand their understanding of the subject matter.
And second it shows the transcript chunks it actually used to generate its answer, which
builds trust and credibility with users. These features work together to create a
comprehensive and user-friendly interface that supports users with economic queries.

Here’s the current UI, displaying the answer to one of our favorite questions.

And guess what? We’re really excited that you guys now get to see the bot in action! If you
have an OpenAI key, you can play with the bot here:
https://pmblive-44r2p4jqja-uw.a.run.app/.

H. Limitations

With this in mind, we need to be clear about our bot’s limitations. GPT itself is limited. As our
bot is based on a generative language model, it is very much imperfect; sometimes, it gets
things wrong.

Here’s one example, with the question asked by our mentor Steve Henn.
Question: If a 7.8 earthquake hits SF California how much damage will it cause?
Answer: A 7.8 magnitude earthquake hitting the San Francisco area would cause an
estimated $200+ billion in economic damage, with 1,800 people estimated to be killed

https://pmblive-44r2p4jqja-uw.a.run.app/

10

and 50,000 injured. It would also cause a disruption in transportation, water systems,
and other infrastructure, as well as exacerbate inequality in the region. Check out the
podcast below to learn more.

The podcast in question was about what would happen if a earthquake hit Los Angeles, and
the estimate was accurate for the LA area. From researching, Steve found that the
generally agreed-upon estimate for the SF area is 1,000 people, rather than 1,800. When
you ask our bot this question for cities not in California, it doesn’t make this mistake; it
simply conflates San Francisco and Los Angeles. This is a mistake.

We had another question resulting in a similar error of conflation:
Question: Can I make a living collecting roadkill?
Answer:While it may be possible to collect roadkill and sell it for profit, it is unlikely
that one could make a sustainable living off of this practice. This is because the
demand for roadkill is low, and there are many legal and health-related barriers to
selling it. Additionally, there are many other more profitable and sustainable ways to
make a living. As Nate Hegyi found in his investigation of the declining number of
hunters, for example, states are trying to recruit new hunters to mitigate a projected
decline in the number of hunters.

Overall, this answer is good. But the reference in the final sentence is to hunting— that’s
not related to roadkill! Secondly, it references someone named Nate Hegyi. When you look
into the podcasts that are referenced in the source section, the first transcript (about
hunting) was reported by Nate Rott. The second transcript (about vets) references reporter
Nate Hegyi. Our bot conflates the two reporters and incorrectly assigns the information
about hunting to Nate Hegyi. The last thing to note is the two transcripts that were pulled to
answer this question— one about hunting, and one about vets — are semantically related
to roadkill, but don’t contain information about roadkill itself. Likely, there are no Planet
Money episodes focused on roadkill. In situations like this, the bot ought to admit it doesn’t
have enough information to answer the question. It also shouldn’t pull transcripts that are
unrelated to the question, even if they are the “most” related. Perhaps we can do more work
in our cosine similarity calculation, like setting a minimum threshold for similarity.

On a positive note, notice how easy it is to identify mistakes in our chatbot. This is due to our
source attribution feature. You can easily see which transcripts are being referenced, how
they’re related to your question, and if the information in them is being correctly conveyed
to you. Yes, ideally, we’d be getting every answer correct – but it's important to be able to
identify and trace errors. This is something that ChatGPT lacks— you don’t know where
your information is coming from, or when and why it could be wrong. Source attribution
helps us fail more gracefully and less painfully. In general, we want to make sure we
correctly brand our bot as a tool that’s in-progress and fallible, and encourage people to
help us improve it with feedback.

11

I. Conclusions & Next Steps

Working on this project to this point has been immensely fruitful and fun, and it’s exciting to
think about the broader implications of our project. Using chatbots and generative large
language models to interact with podcasts presents a new frontier for journalism. Listeners
can now interact with content in ways beyond the finite set of recordings officially produced
by their favorite podcasters. Creators themselves can see what their podcast has said in the
past about a variety topics – and where they’ve said it. And everyone can find and re-love
the content that came out long ago that might otherwise be buried in the archives.

In terms of future work, there’s lots we’d still like to do. The Planet Money Bot is a prototype.
And the nature of large language models like GPT is that they'll never be totally accurate.
So if you have an OpenAI key, we invite you to help us test and explore how it does, at our
live link .

Specific improvements include improving our source attribution process— we’d love it if a
user could click on a chunk and be brought directly to listen to the part of the podcast that
the chunk comes from. We want to continue to make UI updates, potentially formatting
more like a chatbot where you can feel like you’re having a conversation. We also want to
think more about how we introduce this bot to people, as well as how we communicate its
limitations— since it’s based on a language model, the bot remains very much imperfect,
and sometimes it gets things wrong. If we do integrate this in some form at NPR, we want to
make sure we correctly brand it as a tool that’s in-progress and fallible, and encourage
people to help us improve it with feedback.

But we envision the broader vision we’re striving for is an accurate, fun, and source
attributed chatbot that promotes PM and journalism more broadly. We intend to continue
conversations with NPR and keep improving our product, with the hopes of eventually
integrating our chatbot in some form on their website. Perhaps we’ll even be featured on a
Planet Money episode one day!

J. Notes & Thanks

You can read a beautifully comprehensive technical report of our process here:
https://docs.google.com/document/d/112c0F3d_oWUyCkK4Vq0VfBl8EfmoBLVR6bnrC2Rv5
ro/edit?usp=sharing.

Our greatest thanks to everyone who helped us along the way!
● Alex Goldmark, for being our most reliable and persistent source of encouragement

and excitement, as well as his journalism and podcasting knowledge
● Douwe Kiela for his deep well of technical expertise in language models
● Mary Clare Peate, for her ideas and advice on economics and its education materials.

https://docs.google.com/document/d/112c0F3d_oWUyCkK4Vq0VfBl8EfmoBLVR6bnrC2Rv5ro/edit?usp=sharing
https://docs.google.com/document/d/112c0F3d_oWUyCkK4Vq0VfBl8EfmoBLVR6bnrC2Rv5ro/edit?usp=sharing

12

● Sierra Juarez, for her insight on fact-checking at Planet Money.
● Dan Shipper, for being our source of inspiration and for taking the time to share his

learnings with us.
● The Planet Money team and other folks at NPR, who helped test and give valuable

feedback and ideas to improve the bot.
● Steve Henn, R.B. Brenner, Serdar Tumgoren, and the rest of the CS 206 teaching

staff, for their tireless enthusiasm and constructive feedback, and for leading a
wonderful class this quarter!

